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Abstract In this study, a new ab initio method named
CLOOP has been developed to build all-atom loop
conformations. In this method, a loop main-chain con-
formation is generated by sampling main-chain dihedral
angles from a restrained u/w set, and the side-chain
conformations are built randomly. The CHARMM
all-atom force field was used to evaluate the loop con-
formations. Soft core potentials were used to treat the
non-bond interactions, and a designed energy-minimi-
zation technique was used to close and optimize the loop
conformations. It is shown that the two strategies im-
prove the computational efficiency and the loop-closure
rate substantially compared to normal minimization
methods. CLOOP was used to construct the conforma-
tions of 4-, 8-, and 12-residue loops in Fiser’s test set.
The average main-chain root-mean-square deviations
obtained in 1,000 trials for the 10 different loops of each
size are 0.33, 1.27, and 2.77 Å, respectively. CLOOP can
build all-atom loop conformations with a sampling
accuracy comparable with previous loop main-chain
construction algorithms.

Keywords Loop modeling Æ Energy minimization Æ
Loop closure Æ Soft core potential

Introduction

Protein loops are polypeptides connecting more rigid
structural elements of proteins. Because of this flexibility,
they may not be structurally well defined [1]. Loops occur
in a variety of lengths from only a few to as many as 30
residues, though the majority has less than 12 residues
[2]. Protein loops play a key role in the function and
specificity of proteins. They are often involved in active
and binding sites, or take part in molecular recognition.

Protein loops have high structural flexibility and
diversity. The prediction of protein loops is still one of
the open problems in structural biology [3, 4]. In loop
prediction, a loop-construction method is used to create
a large number of conformational candidates. Subse-
quently, a loop-prediction algorithm selects the best
conformation by optimizing and evaluating these can-
didates with an energy function [5–7]. A good loop-
building method should solve the loop-closure problem,
i.e. generate geometrically consistent loop structures
with the rest of the protein chain [8], and sample near-
native conformations.

Loop-conformation generation techniques can be
classified into knowledge-based and ab initio approaches.
Knowledge-based methods depend on a representative
database of loops of the appropriate size with known 3D
structures [9–12]. However, in general, there is no guar-
antee that the database is a homogeneous representation
of all loops’ conformational space. In addition, structural
databases cannot provide representative ensembles for
loops longer than 8 residues [13]. There are many efficient
ab initio methods including random tweak [5, 14, 15],
analytical methods [8, 16, 17], constraint optimization
[18], scaling relaxation, [19] algorithm in robotics [4], and
the contact-matrix method [20]. However, most of them
only generate loop backbone conformations and need to
cooperate with other methods to build all-atom confor-
mations. Some other ab initio methods such as molecular
dynamics [21], simulated annealing [2], and Monte
Carlo [22, 23] sample low-energy loop conformations
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with side-chain atoms by employing an energy function
like a molecular mechanics force field or potential derived
from statistical mechanics. However, these simulation-
based methods are computationally expensive.

In this study, a new ab initio loop-construction
method CLOOP has been developed to generate all-
atom loop conformational ensembles. In CLOOP, loop
candidates are built by sampling main-chain dihedrals
from a restrained dihedral range and assigning
side-chain dihedrals randomly. CLOOP uses an energy-
minimization approach to solve the loop-closure
problem. To improve the efficiency, a designed energy-
minimization strategy is proposed to optimize the
generated loop conformations with the CHARMM
all-atom force field [24]. Furthermore, a soft core
potential [25] is used to calculate the non-bonded energy.
Soft-core potentials smooth the potential energy surface
to facilitate crossing energy barriers. This technique has
been proved successful for loop modeling using molec-
ular dynamics [26–28]. In this article, we report that soft
core potentials increased the loop-closure rate substan-
tially. CLOOP successfully generated conformational
ensembles with near-native loop conformations in good
efficiency for the test loops up to 12 residues.

Methods

Loop generation method

CLOOP can build loop structures on the given anchor
residues of a protein. In preparing the protein structure,
the initial coordinates of loop atoms were generated
randomly. After reading in the protein structure, the
position of the central loop residue was first obtained by
randomly generating a peptide trajectory for the first half
of the loop. The position of the central residue was fixed
as a new anchor residue so that the problem of building a
loop was divided into constructing two smaller loops.
Then, the backbone conformation was generated by
sampling the main-chain dihedral u and w either from a
restricted dihedral range or randomly, with equal prob-
ability. The restricted dihedral range has 11 pairs of u/w
dihedral sub-ranges. It was obtained by adding 100 de-
grees variation to each state of the 11 u/w set developed
by Moult and James [29] for loop modeling. Besides, all
x were set to 180 degree. The side-chain dihedral v of
each loop residue was substituted with a random value.
Having all the required dihedrals, the coordinates of loop
segments were built by extending the ends of the anchor
residues, and the unclosed loop candidates were ob-
tained. Finally, a designed energy-minimization tech-
nique was used to optimize these structures.

Energy function

The CHARMM22 all-atom molecular mechanics force
field [24] was used to calculate the energy of target loop

conformations. In addition to the original energy terms,
a soft core potential provided in the CHARMM soft-
ware package was used to smooth non-bonded interac-
tions (van der Waals and electrostatic energy terms).

Enonbonded ¼ E CHARMM
nonbonded ; r>rsoft ð1Þ

Enonbonded ¼ kðr � rsoftÞ þ ECHARMM
nonbonded ; r\rsoft ð2Þ

where r is the distance of the two interacting atoms,
rsoft is the switching distance for the soft core potential.
In this study, the default value of rsoft 0.885 Å was used.

To improve the efficiency in energy calculation, the
by-clusters-in-cubes (BYCC) method [30], provided by
the CHARMM package, was selected to build the non-
bonded interaction list.

Designed minimization strategy

The performance of CLOOP was investigated in two
ways. One is to calculate the loop energy with a buffer
region, and the other is loop only. The buffer region
included a region extending up to 10 Å around the loop
atoms. In energy minimization, only the loop atoms
were allowed to move and all non-loop atoms, including
those in the buffer region, were fixed.

The designed minimization (DM) strategy for the
loop-closure problem has two stages. In the first stage,
only the internal energy terms except the non-bonded
interactions of the loop including bond, angle, dihedral,
and improper, were considered. The conformational
energies of the loop candidates were minimized with 200
iterations of steepest-descent and 200 iterations of con-
jugate-gradient minimization. In the second stage, the
candidates were minimized further with the full
CHARMM energy function including the van der Waals
and electrostatic energy terms. The minimization pro-
cedure includes sequential steps of 100 iterations of
steepest-descent, conjugate gradient, and adopted
basis of Newton–Raphson minimization methods,
respectively. The minimization threshold was set to
0.1 kcal mol�1.

Loop closure criteria

In this study, if the distance of any two neighboring
main-chain atoms in a loop candidate is lower than
1.8 Å, the candidate will be accepted as a closed loop
conformation.

Implementation

CLOOP was written with the commands of the
CHARMM molecular modeling package (Version 3.0b)
[31]. All computations were performed on an Intel
Pentium 4, 2.60 GHz processor, and the operation sys-
tem was RedHat Linux 9.0.
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Loop test set

The loop test set collected by Fiser et al. [2] was
employed in this study. According to the alphabetical
index, 10 test loops each were selected from the lists of
4-, 8-, and 12-residue loops. Several proteins with
improper residue index and those reported problematic
structures [18] were excluded. For larger loops, two
proteins 351c and 1alc with one 18- and 31-residue loop,
respectively, were used [20].

Sampling results evaluation

In the loop-building process, all the non-loop residues
including the anchor residues were fixed and had the
same coordinates as the crystal structure. Therefore,
the root-mean-square deviation (RMSD) of the loop
region between the predicted loop and the actual
conformation reflects the overall difference of loop
and protein. To evaluate the sampling results, each
closed loop conformation was compared with the na-
tive loop structure using RMSD, which was calculated
with the Cartesian coordinates of main-chain atoms
N, Ca, C.

Results and discussion

Dividing the problem by generating the middle
residue first

The loop-construction approach starts by generating the
position of the loop central residue. This approach
makes the closure of longer loops easier by subdividing
the problem. Given two anchor residues (Depicted in
CPK model in Fig. 1), the loop-construction procedure
of CLOOP builds two loop segments from each anchor.
As shown in Fig. 1a, the loop candidates built directly
have large gaps. The large gaps make the task of mini-
mizing these starting structures more difficult. Instead,
CLOOP records and fixes the position of the central
residue as a new anchor, and the trajectories of both
halves are determined by sampling dihedrals as de-
scribed previously (see Fig. 1b). Figure 1c shows the
closed loop conformation obtained by minimizing the
conformational energy of the structure shown in Fig. 1b.

The performance of CLOOP with and without gen-
erating the central residue first for the 32 test loops,
including the 30 loops in Fiser’s loop set, and the two
larger loops of 351c and 1alc, is shown in Table 1. The
numbers of closed loop conformations for the test loops
with length longer than 4 were all increased when the
loop conformations were constructed by generating the
central residue first. However, the computational time
remains similar for both methods. This result indicates
that dividing the problem through a fixed central residue
facilitates the convergence of the initial minimization
step.

Optimizing the minimization strategy for loop closure

Three minimization strategies were tested specifically to
address the loop-closure problem: (1) the effects of soft
core potentials, (2) the DM strategy in which the loop
structure is first minimized with only bonded terms and
then with all terms of the energy function, and (3) the
influence of the surrounding protein residues (buffer
region) on the force-field energy of a loop conformation.
For the effects of soft core potentials and the DM, the
tests were performed by including or not including the
buffer region in test loops with lengths ranging from 4 to
31 residues. The results are shown in Tables 2 and 3,
respectively.

In the tests with buffer region (Table 2), the soft core
potential substantially increased the number of closed
conformations Nclosed, while the computational time
remained similar. For the test loop proteins with lengths
4, 8, 12, 18, and 31, Nclosed with the soft core potential is
1.2, 2.7, 3.2, 2.3, and 5 times greater, respectively, than
the value obtained by a minimization strategy treating
the non-bonded components of the empirical force field
normally.

Randomly generated conformations inevitably con-
tain unrealistic geometries, including steric clashes. Be-
cause the energy penalty associated to long bonds is
comparatively lower than that caused by steric clashes, it
is hard for a minimization method to cross the high-
potential barrier and ultimately close the loop. The use
of soft core potentials is especially beneficial when the
conformation of a loop is minimized in the presence of a
buffer region, where the limited conformational space
affects the rate of loop closure. The soft core potential
makes loop closure easier by smoothing the energy
landscape and reducing the height of barriers caused by
steric clashes. Several earlier studies on the effect of soft
core potentials on loop modeling focused on their
molecular dynamics [26–28]. The results obtained in this
study demonstrate that soft core potentials are also
useful for energy minimization applied to the loop-clo-
sure problem.

The results of the DM procedure and the normal
minimization (NM) are also compared in Table 2. In the
NM, the target function always includes all energy terms
of CHARMM force field. By comparing the test results
of the DM and the NM without soft core potentials, it is
clear that the major contribution of the DM approach is
to save computational expense while it can also improve
the closure rate in most cases. When the DM strategy
was combined with soft core potentials in CLOOP, the
DM approach decreased the computation time by about
half. Furthermore, the numbers of closed conformations
of all the test loops except those of size 8 and 351c_50–
67 were increased further. Consequently, both soft core
potentials and the DM strategy are effective when loop
candidates are constructed with a buffer region.

The effects of soft core potentials and the DM tech-
nique when CLOOP was run without a buffer region
(loop only) were also tested and the results are shown in
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Table 3. Without the buffer region, the energy barrier
caused by steric clashes is much lower, and loop closure
is easier to obtain. Even using the NM approach, the
closure rate is satisfactory, and the computational time
is shorter than the method with buffer. As the test results
given in Table 3 shows the soft core potentials, and the
DM procedure do not give any improvements when the
loop/protein contacts are not considered.

Accuracy of CLOOP in loop conformation sampling

CLOOP was used to construct the conformations of
Fiser’s loop test set at lengths 4, 8, and 12. The perfor-
mance of CLOOP with and without buffer region in
1,000 trials is summarized in Tables 4 and 5, respec-
tively. In the tables, the values of RMSDbest is the
RMSD for the constructed loop most similar to the

Fig. 1 Schematic diagram of the loop construction approach of
CLOOP. a Generate main-chain trajectory on each anchor residue
(shown in VDW mode) and obtain the position of middle residue
(highlighted in green). b Keep the middle residue as the third

anchor and build an initial all-atom loop structure. Side chain is
depicted with gray line. c Close loop via energy minimization. This
is the all-atom conformation, and side chain is shown in transparent
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experimentally solved loop. RMSDbest is therefore a
lower bound for the accuracy of a loop-prediction
evaluator, given the set provided by CLOOP. The value
RMSDE is the average RMSD for the ensemble of
generated loop conformations. A powerful loop-con-
struction method should be evaluated by the overall
quality of near-optimal conformational sampling
(RMSDE).

When implemented with a buffer region, CLOOP
sampled the near-native conformations for the test loop
set. As shown in Table 4, the average main-chain
RMSD values of the best conformations are 0.33, 1.27,
and 2.77 Å for 4-, 8-, and 12-residue loops, respectively.
The comparisons of the best-generated loop conforma-
tion with X-ray structure coordinates for different size
loops 1gpr_123–126, 135l_84–91, and 1pmy_77–88
are shown in Fig. 2. The results indicate the loop

conformations with lowest RMSD in 1,000 candidates
sampled by CLOOP are very close to their native
structures. The closure rate for loops of 4, 8, and 12 is
98.3, 92.2, and 76.7%, respectively, and the computa-
tional time grows linearly with the loop size. The results
obtained by CLOOP without buffer are listed in Table 5.
The average minimum RMSD of the sampled loop
conformations at length 4, 8, and 12 is 0.64, 2.23, and
4.26 Å, respectively. It is obvious that the sampling
method is more accurate when the contacts of loop and
the buffer region are considered. This accuracy has,
however, a computational cost in terms of throughput.
Compared with the results indicated in Table 5, CLOOP
with buffer is about three to four times slower.

In conclusion, CLOOP with buffer region is more
accurate. It is more suitable for the construction of loop
conformational ensembles. The results thus demonstrate

Table 1 Comparison of the performance of CLOOP with and without generating the middle residue first, the conformational energy of
loop was calculated with buffer region and the number of total generated loop candidates is 100

Loop Length Without With

Nclosed
a Time (min) Nclosed Time (min)

Fiser’s Loop Setb 4 99 2.4 99 2.4
8 64 5.6 92 5.2

12 44 7.2 77 7.2
351c_50–67 18 74 4.4 81 4.6
1alc_61–91 31 56 7.9 63 9.3

aNumber of closed loop conformations
bThere are total 30 test loops in Fiser’s loop set with 10 loops for each length, test results are the averaged values

Table 2 Effects of the soft core potential and the designed minimization (DM) strategy in CLOOP when loop conformational energy was
calculated with a buffer region, and the number of total generated loop candidates is 100

Loop Length NM DM SCP + NM SCP + DM

Nclosed
a Time (min) Nclosed Time (min) Nclosed Time (min) Nclosed Time (min)

Fiser’s loop setb 4 78 3.9 93 2.5 96 3.7 99 2.4
8 35 8.3 53 5.6 93 8.4 92 5.2
12 22 12.8 32 7.9 70 12.6 77 7.2

351c_50–67 18 40 9.1 34 5.8 90 7.3 81 4.6
1alc_61–91 31 9 17.5 4 9.9 45 17.4 63 9.3

NM normal minimizationSCP soft core potentialDM designed minimization
aNumber of closed loop conformations
bThere are total 30 test loops in Fiser’s loop set with ten loops for each length, test results are the averaged values

Table 3 Effects of the SCP and the DM in CLOOP when loop conformational energy was calculated with loop atoms only, and the
number of total generated loop candidates is 100

Loop Length NM DM SCP + NM SCP + DM

Nclosed
a Time (min) Nclosed Time (min) Nclosed Time (min) Nclosed Time (min)

Fiser’s loop setb 4 99 0.8 99 0.8 99 0.8 99 0.8
8 99 1.7 99 1.6 99 1.6 99 1.6
12 99 1.8 99 1.7 98 1.8 98 1.7

351c_50–67 18 99 1.6 99 1.5 98 1.6 98 1.5
1alc_61–91 31 98 3.0 97 2.6 99 2.9 97 2.7

NM normal minimizationSCP soft core potentialDM designed minimization
aNumber of closed loop conformations
bThere are total 30 test loops in Fiser’s loop set with 10 loops for each length, test results are the averaged values
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the importance of considering the contacts of a loop
with its environment, which can only be considered with
an all-atom model.

The performance of CLOOP with buffer is compared
with RAPPER, a successful loop-construction method
that was also tested with Fiser’s loop set [18]. In the
ensemble with 1,000 conformations generated by RAP-
PER, the average best main-chain RMSD from the
native structures is 0.43, 1.11, and 2.21 Å for 4-, 8-, and
12-residue loops, respectively. Therefore, the sampling
accuracy of the CLOOP algorithm with buffer is com-
parable, if marginally inferior to that of RAPPER.
RMSDE of CLOOP is similar to RAPPER, which is
1.82, 4.04, and 6.79 Å (Table 4) for 4-, 8-, and 12-residue
loops, respectively, compared with 1.65, 4.16, and

6.96 Å of RAPPER. The average computational time of
RAPPER, obtained on a 900-MHz AMD Athlon pro-
cessor, is 57.9, 145.6, and 401.8 min for 4-, 8-, and 12-
residue loops, respectively. Even though our computer is
faster (CLOOP was run on an Intel Pentium 4,
2.60 GHz processor), a crude conversion of computa-
tional time for CLOOP with buffer is about 200 min for
12-residue loops, which is only half of the computational
time for RAPPER. For smaller loops with four and
eight amino acids, the efficiencies of the two methods are
similar.

Two other algorithms have been developed recently,
including the divide-and-conquer method [17] and
the cyclic coordinate descent (CCD) algorithm, [4] that
are quite efficient in constructing loop main-chain

Table 4 Performance of CLOOP in 1,000 trials, the conformational energy of loop was calculated with a buffer region

Length 4 Length 8 Length 12

Loop RMSDbest
a Loop RMSDbest Loop RMSDbest

1aaj_82–85 0.28 135l_84–91 1.10 154l_153–164 3.13
1ads_99–102 0.47 1alc_34–41 1.62 1arp_201–212 2.64
1cbs_21–24 0.28 1btl_50–57 1.42 1ctm_9–20 3.00
1fkf_42–45 0.27 1cbs_55–62 1.24 1eco_35–46 2.60
1frd_59–62 0.42 1ddt_127–134 1.28 1ede_150–161 2.45
1gpr_123–126 0.22 1fnd_262–269 1.13 1ezm_122–133 2.42
1iab_100–103 0.31 1gky_72–79 1.17 1hfc_165–176 3.36
1mba_97–100 0.28 1iab_48–55 1.17 1msc_9–20 2.97
1nfp_37–40 0.38 1nar_192–199 1.32 1pbe_129–140 2.78
1pbe_117–120 0.35 1phf_85–92 1.23 1pmy_77–88 2.33
Average 0.33 Average 1.27 Average 2.77
Average RMSDE

b 1.82 Average RMSDE 4.04 Average RMSDE 6.79
Average Time c (min) 23.6 Average Time (min) 49.0 Average Time (min) 70.1
Average Nclosed

d 983 Average Nclosed 922 Average Nclosed 767

aMain-chain RMSD of the best conformation generated by CLOOP from X-ray structure
bAverage main-chain RMSD of the conformational ensemble including all the good conformations
cAverage computational time to generate 1,000 loop candidates for the test loop at certain length
dAverage number of closed loop conformations

Table 5 Performance of CLOOP in 1,000 trials, the conformational energy of loop was calculated without buffer region

Length 4 Length 8 Length 12

Loop RMSDbest
a Loop RMSDbest Loop RMSDbest

1aaj_82–85 0.62 135l_84–91 1.85 154l_153–164 2.83
1ads_99–102 0.86 1alc_34–41 2.17 1arp_201–212 2.85
1cbs_21–24 0.86 1btl_50–57 2.63 1ctm_9–20 3.63
1fkf_42–45 0.62 1cbs_55–62 1.20 1eco_35–46 4.96
1frd_59–62 0.45 1ddt_127–134 2.11 1ede_150–161 3.43
1gpr_123–126 0.80 1fnd_262–269 2.12 1ezm_122–133 4.33
1iab_100–103 0.53 1gky_72–79 4.45 1hfc_165–176 6.32
1mba_97–100 0.70 1iab_48–55 2.10 1msc_9–20 4.71
1nfp_37–40 0.43 1nar_192–199 1.60 1pbe_129–140 5.41
1pbe_117–120 0.51 1phf_85–92 2.11 1pmy_77–88 4.08
Average 0.64 Average 2.23 Average 4.26
Average RMSDE

b 2.50 Average RMSDE 6.86 Average RMSDE 10.25
Average Time c (min) 7.4 Average Time (min) 13.7 Average Time (min) 16.1
Average Nclosed

d 997 Average Nclosed 995 Average Nclosed 991

aMain-chain RMSD of the best conformation generated by CLOOP from X-ray structure
bAverage main-chain RMSD of the conformational ensemble including all the good conformations
cAverage computational time to generate 1,000 loop candidates for the test loop at certain length
dAverage number of closed loop conformations
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conformations. The two methods are faster than
CLOOP, but the sampling accuracy of CLOOP is better.
It is noticeable that CLOOP builds the all-atom loop
conformations, whereas all the methods mentioned
above only generate loop main-chain structures, and an

additional side-chain construction method in real loop
modeling.

The sampling ability of CLOOP was also tested with
an 18-residue loop 351c_50–67 and a 31-residue loop
1alc_61–91, but the method failed to give near-native

Fig. 2 Comparison of the best loop conformations (blue) in 1,000 trials generated by CLOOP with the X-ray structures (gray). a 4-residue
loop 1gpr_123–126; b 8-residue loop 135l_84–91; c 12-residue loop 1pmy_77–88
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conformations. It is still a great challenge to model these
long loops.

Conclusion

In this study, a new ab initio loop-construction method
CLOOP based on energy minimization is proposed. We
have demonstrated that the contribution of the protein
to which a loop is attached facilitates the discrimination
of near-optimal loop structures. The use of soft core
potentials and a DM strategy focus the set of con-
structed loops to near-native loop conformations fur-
ther. The construction process is an important step in
loop prediction because it can offset the cost of evalu-
ating obviously inadequate loop structures. CLOOP was
used to construct the conformations of loops in Fiser’s
loop test set, and the average best main-chain RMSD is
0.33, 1.27, and 2.77 Å for 4-, 8-, and 12-residue loops,
respectively. It can perform an all-atom loop construc-
tion in times comparable to current methods of main-
chain atom only.

CLOOP was designed for real loop-modeling pur-
poses. It can build any loop structure according to the
given sequence on a scaffold protein. This method can be
used to construct an all-atom loop conformations, and
generate a good conformation ensemble of loops with
size up to 12. The CLOOP program is available at http://
morticia.cs.dal.ca/projects/CLOOP/.
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